4.2 Article

Modeling Nuclear Blebs in a Nucleoskeleton of Independent Filament Networks

Journal

CELLULAR AND MOLECULAR BIOENGINEERING
Volume 5, Issue 1, Pages 73-81

Publisher

SPRINGER
DOI: 10.1007/s12195-011-0196-5

Keywords

Nuclear mechanics; Lamina; Nucleoskeleton; Mechanotransduction; Dysmorphism

Funding

  1. NSF [0954421]
  2. NIH [1R01AI076318, 1R01CA140214]
  3. Directorate For Engineering
  4. Div Of Chem, Bioeng, Env, & Transp Sys [0954421] Funding Source: National Science Foundation

Ask authors/readers for more resources

Correlations between altered nuclear shape and disease are empirically observed, but the causes of nuclear dysmorphisms are poorly understood. The nucleoskeleton, which provides the majority of the mechanical stability of the nucleus, is composed primarily of intermediate filaments of lamin proteins and forms a mostly-planar network between the inner nuclear membrane and chromatin. It is unclear if blebs and larger scale changes in nuclear morphology are consequences of reorganization of the nucleoskeleton alone or of other cellular processes. To test this, we computationally recapitulate the lamina network using a mechanical network model created as a network of Hookean springs. A- and B-type lamin filaments were distributed over a spherical surface into distinct networks linked to one another by lamin-associated proteins. Iterative force-based adjustment of the network structure, together with a stochastically modified Bell model of bond breakage and formation, simulates nucleoskeleton reorganization with blebs. The rate of bleb retraction into the nucleus depends on both initial size of the bleb and number of networks being deformed. Our results show that induced blebs are more stable when only one filament component is deformed or when the networks have no interconnections. Also, the kinetics of retraction is influenced by the composition of the bleb. These results match with our experiments and others.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available