4.4 Article

A derivatization assay using gaschromatography/negative chemical ionization tandem mass spectrometry to quantify 3-nitrotyrosine in human plasma

Journal

JOURNAL OF MASS SPECTROMETRY
Volume 38, Issue 11, Pages 1187-1196

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/jms.543

Keywords

gaschromatography/mass spectrometry; 3-nitrotyrosine; nitration; protein; plasma

Ask authors/readers for more resources

Endogenous free or protein-associated 3-nitrotyrosine (3-NT) has been proposed as a biomarker of in vivo oxidative damage caused by nitrating agents. Isotopic dilution assay gaschromatographic/mass spectrometric (GC/MS) techniques have been employed to measure endogenous 3-NT levels. However, the quantitative normal plasma values reported so far are inconsistent. The results vary between the assays; they may have been influenced by in vitro artifactual nitration of tyrosine to 3-NT. In this study, a simple and artifact-free derivatization method for quantifying the endogenous 3-NT content of biological samples by GC/negative chemical ionization MS/MS is presented. The method is based on reduction of the nitro group of the molecule by dithionite, heptafluorobutyric acylation and subsequent methyl derivatization, di-O-methyldi-N-heptafluorobutyryl being the major derivative. The results showed excellent GC and MS properties, such as low background and a favorable fragmentation pattern. Endogenous 3-NT was unequivocally quantified using collision-induced dissociation in the selected reaction monitoring mode, whereas co-elution of unknown compounds interfered in the selected-ion monitoring mode. We found that tyrosine was nitrated in the presence of nitrate anions and heptafluorobutyric anhydride, but the product appeared as a di-O-methylmono-N-heptafluorobutyryl derivative. Therefore, artifactually formed 3-NT did not contribute to the measured endogenous 3-NT level owing to its different derivative structure. The method was applied to determine endogenous 3-NT in human plasma and plasma proteins. A detection limit of 0.03 nm for C-13(6)-labeled 3-NT in plasma samples was established and the response was linear over a concentration range of 0-50 nm (R-2 > 0.999). The endogenous free 3-NT level (mean +/- SD) in ultrafiltered plasma samples from 12 healthy adults was 0.74 +/- 0.30 nm. The mean concentration of 3-NT in their plasma total proteins was 0.60 +/- 0.40 pmol mg(-1). Hence, the described method is selective, eliminates the problem of artifactual nitration and is feasible for the quantification of free and protein-associated 3-NT in biological samples such as plasma. Copyright (C) 2003 John Wiley Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available