4.7 Article Proceedings Paper

Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration

Journal

TREE PHYSIOLOGY
Volume 23, Issue 16, Pages 1113-1124

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/treephys/23.16.1113

Keywords

populus

Categories

Ask authors/readers for more resources

Cottonwoods (Populus spp.) are adapted to riparian or floodplain zones throughout the Northern Hemisphere; they are also used as parents for fast-growing hybrid poplars. We review recent ecophysiological studies of the native cottonwoods Populus angustifolia James, P balsamifera L., R deltoides Marsh., Pfremontii S. Watson and R trichocarpa T. & G. in North America, and R nigra L. in Europe. Variation exists within and across species and hybrids; however, all riparian cottonwoods are dependent on shallow alluvial groundwater that is linked to stream water, particularly in semi-arid regions. This conclusion is based on studies of their natural occurrence, decline following river damming and dewatering (water removal), water relations, isotopic composition of xylem water, and by the establishment of cottonwoods along formerly barren natural channels after flow augmentation in response to the conveyance of irrigation water. When alluvial groundwater is depleted as a result of river dewatering or groundwater pumping, riparian cottonwoods exhibit drought-stress responses including stomatal closure and reduced transpiration and photosynthesis, altered C-13 composition, reduced predawn and midday water potentials, and xylem cavitation. These physiological responses are accompanied by morphological responses including reduced shoot growth, altered root growth, branch sacrifice and crown die-back. In severe cases, mortality occurs. For example, severe dewatering of channels of the braided Big Lost River in Idaho led to mortality of the narrow-leaf cottonwood, R angustifolia, and adjacent sandbar willows, Salix exigua Nutt., within 5 years, whereas riparian woodlands thrived along flowing channels nearby. The conservation and restoration of cottonwoods will rely on the provision of river flow regimes that satisfy these ecophysiological requirements for survival, growth and reproduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available