4.2 Article

Tailoring biomaterial compatibility: In vivo tissue response versus in vitro cell behavior

Journal

INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS
Volume 26, Issue 12, Pages 1077-1085

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/039139880302601205

Keywords

experimental study; cell culture; electroactive polymers; bioresorbable polymers

Ask authors/readers for more resources

Biocompatibility relies essentially on surface phenomena, represented by cell-cell, cell-material and material (polymer)-protein interactions. An in vivo and in vitro experimental investigation was carried out on the biomaterials of two different classes with a good potential for in situ utilisation. Non-resorbable (Polypyrrole, Polyaniline, Polyimide) and resorbable (PLLA-PDXO-PLLA) materials for tissue engineering were studied for their overall tissue tolerance and cellular interactions. These non-resorbable polymers conceived for biosensor applications and implantable drug-delivery systems are intrinsically conductive. The PLLA-PDXO-PLLA triblock copolymer showed interesting tensile properties for bone and cartilage tissue engineering due to the presence of 1,5-dioxepan-2-one. In vitro and in vivo parallel studies showed an interesting correspondence: a) the cells in contact with the resorbable material that appeared to be capable of migratory-regenerative aspects in vitro exhibited good compatibility in vivo; whereas b) the non-resorbable materials, which are designed to remain in situ in vivo, were seen to have the potential to represent an adverse factor (inflammation, fibrotic reactions) that correlated with some aspects of cell behaviour in vitro.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available