4.4 Review

DNA, chromosomes, and in situ hybridization

Journal

GENOME
Volume 46, Issue 6, Pages 953-962

Publisher

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/G03-119

Keywords

repetitive DNA; genome organization; sequence evolution; telomere; centromere

Ask authors/readers for more resources

In situ hybridization is a powerful and unique technique that correlates molecular information of a DNA sequence with its physical location along chromosomes and genomes. It thus provides valuable information about physical map position of sequences and often is the only means to determine abundance and distribution of repetitive sequences making up the majority of most genomes. Repeated DNA sequences, composed of units of a few to a thousand base pairs in size, occur in blocks (tandem or satellite repeats) or are dispersed (including transposable elements) throughout the genome. They are often the most variable components of a genome, often being species and, occasionally, chromosome specific. Their variability arises through amplification, diversification and dispersion, as well as homogenization and loss; there is a remarkable correlation of molecular sequence features with chromosomal organization including the length of repeat units, their higher order structures, chromosomal locations, and dispersion mechanisms. Our understanding of the structure, function, organization, and evolution of genomes and their evolving repetitive components enabled many new cytogenetic applications to both medicine and agriculture, particularly in diagnosis and plant breeding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available