4.4 Article

Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation

Journal

Publisher

ASME
DOI: 10.1115/1.1524584

Keywords

-

Ask authors/readers for more resources

Unsteady cavitation in a Venturi-type section was simulated by two-dimensional computations of viscous, compressible, and turbulent cavitating flows. The numerical model used an implicit finite volume scheme (based on the SIMPLE algorithm) to solve Reynolds-averaged Navier-Stokes equations, associated with a barotropic vapor/liquid state law that strongly links the density variations to the pressure evolution. To simulate turbulence effects on cavitating flows, four different models were implemented (standard k-epsilon RNG; modified k-epsilon RNG; k-omega with and without compressibility effects), and numerical results obtained were compared to experimental ones. The standard models k-epsilon RNG and k-omega to without compressibility effects lead to a poor description of the self-oscillation behavior of the cavitating flow. To improve numerical simulations by taking into account the influence of the compressibility of the two-phase medium on turbulence, two other models were implemented in the numerical code: a modified k-epsilon model and the k-omega model including compressibility effects. Results obtained concerning void ratio, velocity fields, and cavitation unsteady behavior were found in good agreement with experimental ones. The role of the compressibility effects on turbulent two-phase flow modeling was analyzed, and it seemed to be of primary importance in numerical simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available