4.4 Article

Guidance for Removal of Fetal Bovine Serum from Cryopreserved Heart Valve Processing

Journal

CELLS TISSUES ORGANS
Volume 193, Issue 4, Pages 264-273

Publisher

KARGER
DOI: 10.1159/000321166

Keywords

Cryopreservation; Heart valves; Fetal bovine serum; Extracellular matrix; Viability

Funding

  1. Scientific and Technical Affairs Committee of the American Association of Tissue Banks
  2. National Institutes of Health [5T32HL007895-10]
  3. Fraunhofer Gesellschaft Internal Programs [Attract 692263]
  4. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [T32HL007895] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Bovine serum is commonly used in cryopreservation of allogeneic heart valves; however, bovine serum carries a risk of product adulteration by contamination with bovine-derived infectious agents. In this study, we compared fresh and cryopreserved porcine valves that were processed by 1 of 4 cryopreservation formulations, 3 of which were serum-free and 1 that utilized bovine serum with 1.4 M dimethylsulfoxide. In the first serum-free group, bovine serum was simply removed from the cryopreservation formulation. The second serum-free formulation had a higher cryoprotectant concentration, i.e. 2 M dimethylsulfoxide, in combination with a serum-free solution. A colloid, dextran 40, was added to the third serum-free group with 2 to dimethylsulfoxide due to theoretical concerns that removal of serum might increase the incidence of tissue cracking. Upon rewarming, the valves were inspected and subjected to a battery of tests. Gross pathology revealed conduit cracking in 1 of 98 frozen heart valves. Viability data for the cryopreserved groups versus the fresh group demonstrated a loss of viability in half of the comparisons (p < 0.05). No significant differences were observed between any of the cryopreserved groups, with or without bovine serum. Neither routine histology, autofluorescence-based multiphoton imaging nor semiquantitative second-harmonic generation microscopy of extracellular matrix components revealed any statistically significant differences. Biomechanics analyses also revealed no significant differences. Our results demonstrate that bovine serum can be safely removed from heart valve processing and that a colloid to prevent cracking was not required. This study provides guidance for the assessment of changes in cryopreservation procedures for tissues. Copyright (C) 2010 S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available