4.4 Article

Effects of Extracellular Matrix on Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells into Smooth Muscle Cell Lineage: Utility for Cardiovascular Tissue Engineering

Journal

CELLS TISSUES ORGANS
Volume 191, Issue 4, Pages 269-280

Publisher

KARGER
DOI: 10.1159/000260061

Keywords

Mesenchymal stem cells; Smooth muscle cells; Extracellular matrix; Laminin; Cardiovascular tissue engineering

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [19790970]

Ask authors/readers for more resources

Background: Bone marrow-derived mesenchymal stem cells (MSCs) can differentiate into various types of cell, and the extracellular matrix (ECM) is acknowledged to be important for the regulation of cell functions. In this study, we demonstrated the effects of ECMs on the differentiation of human bone marrow-derived MSCs into a smooth muscle cell (SMC) lineage. Methods: Human MSCs (hMSCs) were cultured on dishes coated with 3 types of ECM including laminin (LM), collagen type IV (Col-IV) and fibronectin for 7 days, and simultaneously cultured on a noncoated dish as a control. Cell numbers of these cultured hMSCs were counted, and their expression of SMC-specific genes and proteins was evaluated. hMSCs were then seeded on LM-coated biodegradable sheets and implanted into rat subcutaneous space. After 2 weeks of implantation, these tissues were evaluated. Results: The number of hMSCs was significantly increased by culture on Col-IV-coated dishes. The expression of SMC-specific genes and proteins (alpha-smooth muscle actin, ASMA; h1-calponin, CALP) in hMSC was significantly upregulated from culture on LM-coated dishes. LM-coated sheets showed [GRAPHICS] . a significantly increased expression of ASMA and CALP protein in vivo. Moreover, a fully differentiated marker (SM2) was expressed in the in vivo implanted hMSCs in the course of 2 weeks on the LM-coated sheet. Conclusion: These results suggest that the signal transduction of the cell-matrix interaction for the differentiation of hMSCs into SMCs was activated when cultured with LM. LM-coated materials may thus be useful for cardiovascular tissue engineering. Copyright (C) 2009 S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available