4.2 Article

Autoreactivity against induced or upregulated abundant self-peptides in HLA-A*0201 following measles virus infection

Journal

HUMAN IMMUNOLOGY
Volume 64, Issue 1, Pages 44-55

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S0198-8859(02)00707-3

Keywords

measles virus; autoimmunity; MHC class I epitopes

Categories

Ask authors/readers for more resources

Infectious agents have been implied as causative environmental factors in the development of autoimmunity. However, the exact nature of their involvement remains unknown. We describe a possible mechanism for the activation of autoreactive T cells induced by measles virus (MV) infection. The display of HLA-A*0201 associated peptides obtained from MV infected cells was compared with that from uninfected cells by mass spectrometry. We identified two abundant self peptides, IFI-6-16(74-82) and Hsp90beta(570-578), that were induced or upregulated, respectively, following infection. Their parental proteins, the type I interferon inducible protein IFI-6-16, and the beta chain of heat shock protein 90, have not been involved in MV pathogenesis. MV infection caused minor and major changes in the intracellular expression patterns of these proteins, possibly leading to altered peptide processing. CD8(+) T cells capable of recognizing the self-peptides in the context of HLA-A*0201 were detectable at low basal levels in the neonatal and adult human T cell repertoire, but were functionally silent. In contrast, peptide-specific producing IFN-gamma producing effector cells were present in MV patients during acute infection. Thus, MV infection induces an enhanced display of self-peptides in MHC class 1, which may lead to the temporary activation of autoreactive T cells. (C) American Society for Histocompatibility and Immunogenetics, 2003. Published by Elsevier Science Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available