4.6 Article Proceedings Paper

Acceleration schemes of the discrete velocity method: Gaseous flows in rectangular microchannels

Journal

SIAM JOURNAL ON SCIENTIFIC COMPUTING
Volume 25, Issue 2, Pages 534-552

Publisher

SIAM PUBLICATIONS
DOI: 10.1137/S1064827502406506

Keywords

iterative methods; acceleration schemes; rarefied gas flows

Ask authors/readers for more resources

The convergence rate of the discrete velocity method (DVM), which has been applied extensively in the area of rarefied gas dynamics, is studied via a Fourier stability analysis. The spectral radius of the continuum form of the iteration map is found to be equal to one, which justifies the slow convergence rate of the method. Next the efficiency of the DVM is improved by introducing various acceleration schemes. The new synthetic-type schemes speed up significantly the iterative convergence rate. The spectral radius of the acceleration schemes is also studied and the so-called H1 acceleration method is found to be the optimum one. Finally, the two-dimensional flow problem of a gas through a rectangular microchannel is solved using the new fast iterative DVM. The number of required iterations and the overall computational time are significantly reduced, providing experimental evidence of the analytic formulation. The whole approach is demonstrated using the BGK and S kinetic models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available