4.4 Article

Least-cost input mixtures of water and nitrogen for photosynthesis

Journal

AMERICAN NATURALIST
Volume 161, Issue 1, Pages 98-111

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/344920

Keywords

leaf economics; nitrogen-use efficiency; photosynthesis; water-use efficiency

Ask authors/readers for more resources

In microeconomics, a standard framework is used for determining the optimal input mix for a two-input production process. Here we adapt this framework for understanding the way plants use water and nitrogen (N) in photosynthesis. The least-cost input mixture for generating a given output depends on the relative cost of procuring and using nitrogen versus water. This way of considering the issue integrates concepts such as water-use efficiency and photosynthetic nitrogen-use efficiency into the more inclusive objective of optimizing the input mix for a given situation. We explore the implications of deploying alternative combinations of leaf nitrogen concentration and stomatal conductance to water, focusing on comparing hypothetical species occurring in low-versus high-humidity habitats. We then present data from sites in both the United States and Australia and show that low-rainfall species operate with substantially higher leaf N concentration per unit leaf area. The extra protein reflected in higher leaf N concentration is associated with a greater drawdown of internal CO2, such that low-rainfall species achieve higher photosynthetic rates at a given stomatal conductance. This restraint of transpirational water use apparently counterbalances the multiple costs of deploying high-nitrogen leaves.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available