4.3 Article

Endoplasmic reticulum stress or mutation of an EF-hand Ca2+-binding domain directs the FKBP65 rotamase to an ERAD-based proteolysis

Journal

CELL STRESS & CHAPERONES
Volume 16, Issue 6, Pages 607-619

Publisher

SPRINGER
DOI: 10.1007/s12192-011-0270-x

Keywords

Endoplasmic reticulum stress; Apoptosis; FKBP65; EF-hand domain; Proteasome; Osteogenesis imperfecta; Retrotranslocation; Peptidyl-prolyl isomerase; Rotamase; Tropoelastin; Procollagen

Categories

Funding

  1. National Institutes of Health [R15GM065139]
  2. National Science Foundation [DBI-0452587]

Ask authors/readers for more resources

FKBP65 is an endoplasmic reticulum (ER)-localized chaperone and rotamase, with cargo proteins that include tropoelastin and collagen. In humans, mutations in FKBP65 have recently been shown to cause a form of osteogenesis imperfecta (OI), a brittle bone disease resulting from deficient secretion of mature type I collagen. In this work, we describe the rapid proteolysis of FKBP65 in response to ER stress signals that activate the release of ER Ca2+ stores. A large-scale screen for stress-induced cellular changes revealed FKBP65 proteins to decrease within 6-12 h of stress activation. Inhibiting IP3R-mediated ER Ca2+ release blocked this response. No other ER-localized chaperone and folding mediators assessed in the study displayed this phenomenon, indicating that this rapid proteolysis of folding mediator is distinctive. Imaging and cellular fractionation confirmed the localization of FKBP65 (72 kDa glycoprotein) to the ER of untreated cells, a rapid decrease in protein levels following ER stress, and the corresponding appearance of a 30-kDa fragment in the cytosol. Inhibition of the proteasome during ER stress revealed an accumulation of FKBP65 in the cytosol, consistent with retrotranslocation and a proteasome-based proteolysis. To assess the role of Ca2+-binding EF-hand domains in FKBP65 stability, a recombinant FKBP65-GFP construct was engineered to ablate Ca2+ binding at each of two EF-hand domains. Cells transfected with the wild-type construct displayed ER localization of the FKBP65-GFP protein and a proteasome-dependent proteolysis in response to ER stress. Recombinant FKBP65-GFP carrying a defect in the EF1 Ca2+-binding domain displayed diminished protein in the ER when compared to wild-type FKBP65-GFP. Proteasome inhibition restored mutant protein to levels similar to that of the wild-type FKBP65-GFP. A similar mutation in EF2 did not confer FKBP65 proteolysis. This work supports a model in which stress-induced changes in ER Ca2+ stores induce the rapid proteolysis of FKBP65, a chaperone and folding mediator of collagen and tropoelastin. The destruction of this protein may identify a cellular strategy for replacement of protein folding machinery following ER stress. The implications for stress-induced changes in the handling of aggregateprone proteins in the ER-Golgi secretory pathway are discussed. This work was supported by grants from the National Institutes of Health (R15GM065139) and the National Science Foundation (DBI-0452587).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available