4.1 Article

Mechanisms of internalization of apoptotic and necrotic L929 cells by a macrophage cell line studied by electron microscopy

Journal

JOURNAL OF MORPHOLOGY
Volume 258, Issue 3, Pages 336-345

Publisher

WILEY-LISS
DOI: 10.1002/jmor.10161

Keywords

apoptosis; necrosis; macropinocytosis; phagocytosis; ultrastructure

Ask authors/readers for more resources

Rapid and efficient phagoeytic removal of dying cells is a key feature of apoptosis. In necrotic caspase-independent modes of death, the role and extent of phagocytosis is not well documented. To address this issue, we studied at the ultrastructural level the phagocytic response to dying cells in an in vitro phagocytosis assay with a mouse macrophage cell line (Mf4/4). As target cells, murine L929sAhFas cells were induced to die by TNFR1-mediated necrosis or by Fas-mediated apoptosis. Apoptotic L929sAhFas cells are taken up by complete engulfment of apoptotic bodies as single entities forming a tight-fitting phagosome, thus resembling the zipper-like mechanism of internalization. In contrast, primary and secondary necrotic cells were internalized by a macropinocytotic mechanism with formation of multiple ruffles by the ingesting macrophage. Ingestion of necrotic cellular material was invariably taking place after the integrity of the cell membrane was lost and did not occur as discrete particles, in contrast to apoptotic material that is surrounded by an intact membrane. Although nuclei of necrotic cells have been observed in the vicinity of macrophages, no uptake of necrotic nuclei was observed. The present report provides a basis for future studies aimed at discovering molecular pathways that precede these diverse mechanisms of uptake. J. Morphol. 258:336-345, 2003. (C) 2003 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available