4.5 Article Proceedings Paper

Processing maps: A status report

Journal

JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
Volume 12, Issue 6, Pages 638-645

Publisher

SPRINGER
DOI: 10.1361/105994903322692420

Keywords

aluminides; metal matrix composites; processing maps

Ask authors/readers for more resources

In the last two decades, processing maps have been developed on a wide variety of materials including metals and alloys, metal matrix composites, and aluminides, and applied to optimizing hot workability of materials and for process design in bulk metal working. Processing maps consist of a superimposition of efficiency of power dissipation and the instability maps, the former revealing the safe domain for processing and the latter setting the limits for avoiding undesirable microstructures. The dynamic materials model, which forms the basis for processing maps, is discussed in relation to other materials models. The application of dynamical systems principles to understanding of deterministic chaos in the system will help in achieving a greater degree of microstructural control during processing. The patterns in the hot working behavior as revealed by the processing maps of several classes of alloys relevant to technology are reviewed briefly. Processing maps have also been applied to analyze several industrial problems including process optimization, product property control, and defect avoidance, and a few examples are listed. With the processing maps reaching a matured stage as an effective tool for optimizing materials workability, expert systems and artificial neural network models are being developed to aid and prompt novice engineers to design and optimize metal processing without the immediate availability of a domain expert, and the directions of research in this area are outlined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available