4.7 Article

NuRD Suppresses Pluripotency Gene Expression to Promote Transcriptional Heterogeneity and Lineage Commitment

Journal

CELL STEM CELL
Volume 10, Issue 5, Pages 583-594

Publisher

CELL PRESS
DOI: 10.1016/j.stem.2012.02.020

Keywords

-

Funding

  1. Wellcome Trust
  2. EMBO
  3. BBSRC
  4. Pfizer Neusentis
  5. Cancer Research UK
  6. MAC
  7. MRC [G0600275, G0800784, G1000847] Funding Source: UKRI
  8. Cancer Research UK [15679] Funding Source: researchfish
  9. Medical Research Council [G0800784, G0600275, G0800784B, G1000847] Funding Source: researchfish

Ask authors/readers for more resources

Transcriptional heterogeneity within embryonic stem cell (ESC) populations has been suggested as a mechanism by which a seemingly homogeneous cell population can initiate differentiation into an array of different cell types. Chromatin remodeling proteins have been shown to control transcriptional variability in yeast and to be important for mammalian ESC lineage commitment. Here we show that the Nucleosome Remodeling and Deacetylation (NuRD) complex, which is required for ESC lineage commitment, modulates both transcriptional heterogeneity and the dynamic range of a set of pluripotency genes in ESCs. In self-renewing conditions, the influence of NuRD at these genes is balanced by the opposing action of self-renewal factors. Upon loss of self-renewal factors, the action of NuRD is sufficient to silence transcription of these pluripotency genes, allowing cells to exit self-renewal. We propose that modulation of transcription levels by NuRD is key to maintaining the differentiation responsiveness of pluripotent cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available