4.7 Article

Fate Restriction and Multipotency in Retinal Stem Cells

Journal

CELL STEM CELL
Volume 9, Issue 6, Pages 553-562

Publisher

CELL PRESS
DOI: 10.1016/j.stem.2011.11.004

Keywords

-

Funding

  1. Marie Curie IIF fellowship
  2. German Science Funding Agency [SFB 488, SFB 873]

Ask authors/readers for more resources

Stem cells have the capacity to both self-renew and generate postmitotic cells. Long-term tracking of individual clones in their natural environment constitutes the ultimate way to validate postembryonic stem cells. We identify retinal stem cells (RSCs) using the spatiotemporal organization of the fish retina and follow the complete offspring of a single cell during the postnatal life. RSCs generate two tissues of the adult fish retina, the neural retina (NR) and the retinal-pigmented epithelium (RPE). Despite their common embryonic origin and tight coordination during continuous organ growth, we prove that NR and RPE are maintained by dedicated RSCs that contribute in a fate-restricted manner to either one or the other tissue. We show that in the NR, RSCs are multipotent and generate all neuron types and glia. The clonal origin of these different cell types from a multipotent NSC has far-reaching implications for cell type and tissue homeostasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available