3.8 Review

Cathepsins in the osteoclast

Journal

JOURNAL OF ELECTRON MICROSCOPY
Volume 52, Issue 6, Pages 551-558

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jmicro/52.6.551

Keywords

cathepsin; osteoclast; protease; bone matrix; bone resorption; cystatin

Categories

Ask authors/readers for more resources

The mechanism by which bone collagen and other organic components are degraded by the osteoclast during osteoclastic bone resorption was unclear until the 1980s. Studies conducted since the early 1990s have identified lysosomal proteases, mainly cathepsins that are active at low pH, involved in osteoclastic bone resorption. Several cathepsins, such as cathepsins C, D, B, E, G and L, were initially demonstrated to take part in the degradation of organic bone matrix in osteoclasts. Cathepsin K, which has high proteolytic activity and localizes primarily in osteoclasts, was discovered in 1995. This first tissue-specific cathepsin was associated with pycnodysostosis, a genetic disorder observable as an osteopetrotic phenotype in cathepsin K-deficient mice. Cystatin C, an endogenous inhibitor of cysteine proteases, regulates the activity of cathepsin K. However, detailed morphological observations suggest that the organic bone matrix is degraded by not only cathepsin K, but also by matrix metalloproteinases or other cathepsins. The osteoclast possesses a unique endocytotic/exocytotic structure and each cathepsin is specifically localized in the osteoclast, which implies that each cathepsin contributes cooperatively to the process of osteoclastic bone resorption. Further studies may clarify the regulation of cathepsin activities and the roles of cathepsins during bone remodelling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available