3.8 Article

CFD simulation of coupled heat and mass transfer through porous foods during vacuum cooling process

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0140-7007(02)00038-5

Keywords

food; porous medium; cooling; vacuum; heat transfer; mass transfer; simulation; CFD

Ask authors/readers for more resources

A numerical simulation by using a computational fluid dynamics (CFD) code is carried out to predict heat and mass transfer during vacuum cooling of porous foods on the basis of mathematical models of unsteady heat and mass transfer. The simulations allow the simultaneous prediction of temperature distribution, weight loss and moisture content of the meats at low saturation pressure throughout the chilling process. The simulations are also capable of accounting for the effects of the dependent variables such as pressure, temperature, density and water content, thermal shrinkage, and anisotropy of the food. The model is verified by vacuum cooling of cooked meats with cylindrical shape within an experimental vacuum cooler. A data file for pressure history was created from the experimental pressure values, which were applied in the simulations as the boundary condition of the surface temperature. (C) 2002 Elsevier Science Ltd and IIR. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available