4.8 Article

Enhanced TLR-induced NF-κB signaling and type I interferon responses in NLRC5 deficient mice

Journal

CELL RESEARCH
Volume 22, Issue 5, Pages 822-835

Publisher

INST BIOCHEMISTRY & CELL BIOLOGY
DOI: 10.1038/cr.2012.53

Keywords

innate immune signaling; NF-kappa B activation; type I interferon signaling; Nod-like receptors

Categories

Funding

  1. National Institutes of Health (NIH) [CA090327, CA101795, CA121191, CA116408, CA094327, DA030338]
  2. Cancer Research Institute
  3. The Methodist Hospital Research Institute
  4. The China Scholarship Council (CSC)

Ask authors/readers for more resources

Nod-like receptors (NLRs) are intracellular sensors that respond to a variety of pathogen and intracellular danger signals to induce innate immune responses. NLRC5 has recently been identified to be an important regulator of NF-kappa B, type I interferon (IFN) and inflammasome signaling pathways, but the in vivo function and mechanisms of NLRC5 remain to be defined. Here, we describe the generation and characterization of NLRC5 knockout mice. We show that induction of NLRC5 expression by Toll-like receptor (TLR) ligand or cytokine stimulation requires the signal transducers and activators of transcription (Stat)1-mediated signaling pathway. NLRC5 ablation reduces MHC class I expression, and enhances IKK and IRF3 phosphorylation in response to TLR stimulation or viral infection. Consistent with these observations, we found that NLRC5 deficiency enhanced IL-6 and IFN-beta production in mouse embryonic fibroblasts (MEFs), peritoneal macrophages and bone marrow-derived macrophages (BMMs), but not bone marrow-derived dendritic cells (BMDCs) after LPS stimulation or vesicular stomatitis virus (VSV) infection. Furthermore, we found that NLRC5-deficient mice produced higher amounts of IL-6 and IFN-beta in the sera when they were challenged with LPS or infected with VSV. Taken together, these results provide in vivo evidence that NLRC5 plays critical roles in MHC class I expression, innate immune signaling and antiviral innate immune responses, thus serving as an important target for modulating innate immune signaling and regulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available