4.8 Article

Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation

Journal

CELL RESEARCH
Volume 21, Issue 5, Pages 817-834

Publisher

INST BIOCHEMISTRY & CELL BIOLOGY
DOI: 10.1038/cr.2011.55

Keywords

mitochondria; mitochondrial electron transport chain; ROS; MnSOD; muscle differentiation

Categories

Funding

  1. Korea government (MEST) [20090091346]
  2. Medical Research Council [MC_U105663142] Funding Source: researchfish
  3. MRC [MC_U105663142] Funding Source: UKRI

Ask authors/readers for more resources

Mitochondrial reactive oxygen species (mROS) have been considered detrimental to cells. However, their physiological roles as signaling mediators have not been thoroughly explored. Here, we investigated whether mROS generated from mitochondrial electron transport chain (mETC) complex I stimulated muscle differentiation. Our results showed that the quantity of mROS was increased and that manganese superoxide dismutase (MnSOD) was induced via NF-kappa B activation during muscle differentiation. Mitochondria-targeted antioxidants (MitoQ and MitoTEMPOL) and mitochondria-targeted catalase decreased mROS quantity and suppressed muscle differentiation without affecting the amount of ATP. Mitochondrial alterations, including the induction of mitochondrial transcription factor A and an increase in the number and size of mitochondria, and functional activations were observed during muscle differentiation. In particular, increased expression levels of mETC complex I subunits and a higher activity of complex I than other complexes were observed. Rotenone, an inhibitor of mETC complex I, decreased the mitochondrial NADH/NAD(+) ratio and mROS levels during muscle differentiation. The inhibition of complex I using small interfering RNAs and rotenone reduced mROS levels, suppressed muscle differentiation, and depleted ATP levels with a concomitant increase in glycolysis. From these results, we conclude that complex I-derived O-2 center dot(-), produced through reverse electron transport due to enhanced metabolism and a high activity of complex I, was dismutated into H2O2 by MnSOD induced via NF-kappa B activation and that the dismutated mH(2)O(2) stimulated muscle differentiation as a signaling messenger.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available