4.8 Article

Rck of Salmonella enterica, subspecies enterica serovar Enteritidis, mediates Zipper-like internalization

Journal

CELL RESEARCH
Volume 20, Issue 6, Pages 647-664

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/cr.2010.45

Keywords

Salmonella; invasion; adherence; small G-protein; actin; outer membrane protein; Zipper-like entry pathway

Categories

Funding

  1. Delegation Regionale a la Recherche et a la Technologie du Centre (FEDER) [163432245]
  2. Region Centre [2008-00036085]
  3. Region Centre
  4. Institut National de la Recherche Agronomique

Ask authors/readers for more resources

Salmonella can invade non-phagocytic cells through its type III secretion system (T3SS-1), which induces a Trigger entry process. This study showed that Salmonella enterica, subspecies enterica serovar Enteritidis can also invade cells via the Rck outer membrane protein. Rck was necessary and sufficient to enable non-invasive E. coli and Rck-coated beads to adhere to and invade different cells. Internalization analysis of latex beads coated with different Rck peptides showed that the peptide containing amino acids 140-150 promoted adhesion, whereas amino acids between 150 and 159 modulated invasion. Expression of dominant-negative derivatives and use of specific inhibitors demonstrated the crucial role of small GTPases Rac1 and Cdc42 in activating the Arp2/3 complex to trigger formation of actin-rich accumulation, leading to Rck-dependent internalization. Finally, scanning and transmission electron microscopy with Rck-coated beads and E. coli expressing Rck revealed microvillus-like extensions that formed a Zipper-like structure, engulfing the adherent beads and bacteria. Overall, our results provide new insights into the Salmonella T3SS-independent invasion mechanisms and strongly suggest that Rck induces a Zipper-like entry mechanism. Consequently, Salmonella seems to be the first bacterium found to be able to induce both Zipper and Trigger mechanisms to invade host cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available