4.2 Article

Interaction of a shock with a sphere suspended in a vertical shock tube

Journal

SHOCK WAVES
Volume 13, Issue 3, Pages 191-200

Publisher

SPRINGER-VERLAG
DOI: 10.1007/s00193-003-0209-y

Keywords

unsteady drag force; drag force measurement; vertical shock tube; numerical drag simulation; negative drag force

Categories

Ask authors/readers for more resources

Shock wave interaction with a sphere is one of the benchmark tests in shock dynamics. However, unlike wind tunnel experiments, unsteady drag force on a sphere installed in a shock tube have not been measured quantitatively. This paper presents an experimental and numerical study of the unsteady drag force acting on a 80 mm diameter sphere which was vertically suspended in a 300 mm x 300 mm vertical shock tube and loaded with a planar shock wave of M-s = 1.22 in air. The drag force history on the sphere was measured by an accelerometer installed in it. Accelerometer output signals were subjected to deconvolution data processing, producing a drag history comparable to that obtained by solving numerically the Navier-Stokes equations. A good agreement was obtained between the measured and computed drag force histories. In order to interpret the interaction of shock wave over the sphere, high speed video recordings and double exposure holographic interferometric observations were also conducted. It was found that the maximum drag force appeared not at the time instant when the shock arrived at the equator of the sphere, but at some earlier time before the transition of the reflected shock wave from regular to Mach reflection took place. A negative value of the drag force was observed, even though for a very short duration of time, when the Mach stem of the transmitted shock wave relfected and focused at the rear stagnation point of the sphere.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available