4.6 Article

Soil microbial activity in a Liquidambar plantation unresponsive to CO2-driven increases in primary production

Journal

APPLIED SOIL ECOLOGY
Volume 24, Issue 3, Pages 263-271

Publisher

ELSEVIER
DOI: 10.1016/S0929-1393(03)00002-7

Keywords

carbon dioxide enrichment; soil; extracellular enzyme activity; bacterial substrate utilization; nitrogen mineralization; global change

Categories

Ask authors/readers for more resources

The indirect responses of soil microbiota to changes in plant physiology effected by elevated atmospheric carbon dioxide have the potential to alter nutrient availability and soil carbon storage. We measured fine root density, microbial biomass nitrogen, rates of nitrogen mineralization and nitrification, substrate utilization by soil bacteria and extracellular enzyme activities (EEA) associated with bulk soil and fine root rhizoplanes within a 3-year period at the Oak Ridge National Laboratory (ORNL) Free Air Carbon Enrichment (FACE) experiment, situated in a Liquidambar styraciflua plantation. Rhizoplane EEA was similar to that of bulk soil. Prior studies have reported a 21% increase in net primary production (NPP) in the enrichment plots and evidence that additional carbon is reaching the soil system, however we observed no response in any of the variables we measured. These results, which contrast with those from other temperate forest FACE sites, suggest that soil characteristics can influence the magnitude and timing of belowground responses. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available