4.8 Article

Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma

Journal

CELL RESEARCH
Volume 19, Issue 7, Pages 828-837

Publisher

INST BIOCHEMISTRY & CELL BIOLOGY
DOI: 10.1038/cr.2009.72

Keywords

microRNA; cell cycle; BTG2; laryngeal carcinoma; microRNA-21

Categories

Funding

  1. National Natural Science Foundation of China
  2. Key Program of the Natural Science Foundation of Tianjing [08JC-ZDJC23300]

Ask authors/readers for more resources

MicroRNAs are short regulatory RNAs that negatively modulate gene expression at the post-transcriptional level, and are deeply involved in the pathogenesis of several types of cancers. To investigate whether specific miRNAs and their target genes participate in the molecular pathogenesis of laryngeal carcinoma, oligonucleotide microarrays were used to assess the differential expression profiles of microRNAs and mRNAs in laryngeal carcinoma tissues compared with normal tissues. The oncogenic miRNA, microRNA-21 (miR-21), was found to be upregulated in laryngeal carcinoma tissues. Knockdown of miR-21 by specific antisense oligonucleotides inhibited the proliferation potential of HEp-2 cells, whereas overexpression of miR-21 elevated growth activity of the cells, as detected by the colony formation assay. The cell number reduction caused by miR-21 inhibition was due to the loss of control of the G1-S phase transition, instead of a noticeable increase in apoptosis. Subsequently, a new target gene of miR-21, BTG2, was found to be downregulated in laryngeal carcinoma tissues. BTG2 is known to act as a pan-cell cycle regulator and tumor suppressor. These findings indicate that aberrant expression of miR-21 may contribute to the malignant phenotype of laryngeal carcinoma by maintaining a low level of BTG2. The identification of the oncogenic miR-21 and its target gene, BTG2, in laryngeal carcinoma is potentially valuable for cancer diagnosis and therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available