4.8 Article

Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family

Journal

CELL RESEARCH
Volume 19, Issue 9, Pages 1110-1119

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/cr.2009.70

Keywords

Oryza sativa L.; adventitious root; OsGNOM1; polar auxin transport

Categories

Funding

  1. Key Basic Research Special Foundation of China [2005CB20900]
  2. National High Technology Research and Development Program [2007AA021403, 2006AA10Z175]
  3. National Natural Science Foundation of China [30471118, 30770191]
  4. Doctoral Program of Higher Education [20070335081]

Ask authors/readers for more resources

The fibrous root system in cereals comprises primarily adventitious roots (ARs), which play important roles in nutrient and water uptake. Current knowledge regarding the molecular mechanism underlying AR development is still limited. We report here the isolation of four rice (Oryza sativa L.) mutants, from different genetic backgrounds, all of which were defective in AR formation. These mutants exhibited reduced numbers of lateral roots (LRs) and partial loss of gravitropism. The mutants also displayed enhanced sensitivity to N-1-naphthylphthalamic acid, an inhibitor of polar auxin transport (PAT), indicating that the mutations affected auxin transport. Positional cloning using one of the four mutants revealed that it was caused by loss-of-function of a guanine nucleotide exchange factor for ADP-ribosylation factor (OsGNOM1). RT-PCR and analysis of promoter::GUS transgenic plants showed that OsGNOM1 is expressed in AR primordia, vascular tissues, LRs, root tips, leaves, anthers and lemma veins, with a distribution pattern similar to that of auxin. In addition, the expressions of OsPIN2, OsPIN5b and OsPIN9 were altered in the mutants. Taken together, these findings indicate that OsGNOM1 affects the formation of ARs through regulating PAT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available