4.7 Article

Wnt/ß-catenin signalling pathway mediates high glucose induced cell injury through activation of TRPC6 in podocytes

Journal

CELL PROLIFERATION
Volume 46, Issue 1, Pages 76-85

Publisher

WILEY
DOI: 10.1111/cpr.12010

Keywords

-

Categories

Funding

  1. National Basic Research Program of China [2011CB944003]
  2. National Natural Science Foundation of China [31271074]

Ask authors/readers for more resources

Objectives Diabetic nephropathy is a major complication of diabetes and a frequent cause of end-stage renal disease and recent studies suggest that podocyte damage may play a role in the pathogenesis of this. At early onset of diabetic nephropathy there is podocyte drop-out, which is thought to provoke glomerular albuminuria and subsequent glomerular injury; however, the underlying molecular mechanisms of this remain poorly understood. Here we report that we tested the hypothesis that early diabetic podocyte injury is caused, at least in part, by up-regulation of transient receptor potential cation channel 6 (TRPC6), which is regulated by the canonical Wnt signalling pathway, in mouse podocytes. Materials and methods Mechanism of injury initiation in mouse podocytes, by high concentration of D-glucose (HG, 30 mM), was investigated by MTT, flow cytometry, real-time quantitative PCR, and western blot analysis. Results HG induced apoptosis and reduced viability of differentiated podocytes. It caused time-dependent up-regulation of TRPC6 and activation of the canonical Wnt signalling pathway, in mouse podocytes. In these cells, blockade of the Wnt signalling pathway by dickkopf related protein 1 (Dkk1) resulted in effective reduction of TRPC6 up-regulation and amelioration of podocyte apoptosis. Furthermore, reduction of cell viability induced by HG was attenuated by treatment with Dkk1. Conclusion These findings indicate that the Wnt/beta-catenin signalling pathway may potentially be active in pathogenesis of TRPC6-mediated diabetic podocyte injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available