4.7 Article

Transglutaminase down-regulates the dimerization of epidermal growth factor receptor in rat perivenous and periportal hepatocytes

Journal

CELL PROLIFERATION
Volume 42, Issue 5, Pages 647-656

Publisher

WILEY
DOI: 10.1111/j.1365-2184.2009.00622.x

Keywords

-

Categories

Ask authors/readers for more resources

Objective: Recently, we found that transglutaminase 2 (TG2) might be involved in the difference in proliferative capacities between periportal hepatocytes (PPH) and perivenous hepatocytes (PVH) through down-regulation of high-affinity epidermal growth factor receptor (EGFR). However, it is uncertain whether this high-affinity EGFR contributes to the hepatocyte growth signalling pathway. Here, we have investigated the influence of TG2 on EGF-induced EGFR dimerization and its phosphorylation, which are important steps in the hepatocyte proliferative/growth signalling pathway, in PPH and PVH. Materials and methods: PPH and PVH were isolated using the digitonin/collagenase perfusion technique. Amounts of TG2, EGFR dimerization and its phosphorylation were determined by Western blot analysis. Results: Pretreatment with monodansylcadaverine, an inhibitor of TG2, greatly increased EGF-induced EGFR dimerization and its phosphorylation in PVH compared with PPH. Conversely, treatment with retinoic acid, an inducer of TG2, significantly decreased EGF-induced EGFR dimerization and its phosphorylation with a significant increase in TG2 expression and its catalysed products, isopeptide bonds, in both subpopulations. It was found that EGFR served as a substrate for TG2. Conclusion: The present data showed good correlation with our previous data on EGF-induced DNA synthesis and EGFR-binding affinity to EGF. These results suggest that zonal difference in cell growth between PPH and PVH may be caused by down-regulation of EGFR dimerization and subsequent autophosphorylation through TG2-mediated cross-linking of EGFR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available