4.7 Article

Knocking-down the expression of nucleostemin significantly decreases rate of proliferation of rat bone marrow stromal stem cells in an apparently p53-independent manner

Journal

CELL PROLIFERATION
Volume 41, Issue 1, Pages 28-35

Publisher

WILEY
DOI: 10.1111/j.1365-2184.2007.00505.x

Keywords

-

Categories

Ask authors/readers for more resources

Objectives: Nucleostemin (NS) is a recently identified GTP-binding protein, predominantly expressed in embryonic and adult stem cells but not in terminally differentiated cells. NS is expressed in bone marrow-derived mesenchymal stem cells, and its expression ceases upon induction of neural differentiation. The major aim of this study was to determine whether down-regulation of NS expression acts as a promoter, or otherwise as a by-product of differentiation and senescence processes. Materials and methods: We used RNA interference protocols to specifically knock down NS in rat bone marrow-derived stromal stem cells. Changes in rate of proliferation and cell cycle profile after knocking-down of NS were measured. In addition, changes in expression of associated genes were studied by semiquantitative RT-PCR, Western blotting and immunocytochemistery. Results: Knocked-down expression of NS caused a significant decrease in the rate of cell proliferation with concomitant shutting off of expression of cyclin D1 and survivin, two other well-known regulators of cell proliferation. Interestingly, we noticed no obvious changes in expression level of p21, the main effector of p53 for its cell cycle repressing function. Conclusion: Our findings revealed a master role for NS in promoting proliferation of rat bone marrow-derived stromal stem cells. Moreover, we suggest that despite previous proposals, the cell cycle arrest/inhibitory role of NS is unlikely to be related to its proposed property of interaction with p53.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available