4.1 Article

The role of bronsted and Lewis acid sites of vanadyl pyrophosphate measured by dimethylpyridine-temperature programmed desorption in the selective oxidation of butane

Journal

JOURNAL OF THE JAPAN PETROLEUM INSTITUTE
Volume 46, Issue 1, Pages 62-68

Publisher

JAPAN PETROLEUM INST
DOI: 10.1627/jpi.46.62

Keywords

vanadyl pyrophosphate catalyst; acidic property; dimethylpyridine; temperature programmed desorption; butane oxidation; maleic anhydride

Ask authors/readers for more resources

Acidic properties of three types of (VO)(2)P2O7 Catalysts were investigated by temperature programmed desorption (TPD) using 3,5- and 2,6-dimethylpyridine as probes, and the selective oxidation of butane to maleic anhydride (MA) was performed. VPO-org was prepared in organic solvent, VPO-redu was obtained by reduction of VOPO4.2H(2)O, and VPO-aq was prepared in aqueous medium. 3,5-Dimethylpyridine (3,5-DMP) is adsorbed on both Bronsted and Lewis acid sites, whereas 2,6-dimethylpyridine (2,6-DMP) is selectively adsorbed on Bronsted acid sites due to the steric hindrance of the two methyl groups, so the amounts and strengths of the Bronsted and Lewis acid sites could be determined separately. The (VO)(2)P2O7 catalysts had four types of acid sites: weak and strong Bronsted acid sites, and weak and strong Lewis acid sites. The acidic properties were greatly dependent on the preparation methods as follows: VPO-org had a larger amount of the strong Bronsted acid sites and these acid sites were relatively weak. VPO-redu had a larger amount of the strong Lewis acid sites and VPO-aq had fewer acid sites. The selectivity to MA at low conversion increased with the amount of strong Lewis acid sites, indicating that the strong Lewis acid sites are important for MA formation. The strong Bronsted acid sites may promote the consecutive oxidation of MA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available