4.7 Article

Multilineage potential of homozygous stem cells derived from metaphase II oocytes

Journal

STEM CELLS
Volume 21, Issue 2, Pages 152-161

Publisher

WILEY
DOI: 10.1634/stemcells.21-2-152

Keywords

stem cell; homozygous; metaphase; oocyte

Ask authors/readers for more resources

Human stem cells derived from human fertilized oocytes, fetal primordial germ cells, umbilical cord blood, and adult tissues provide potential cell-based therapies for repair of degenerating or damaged tissues. However, the diversity of major histocompatibility complex (MHC) antigens in the general population and the resultant risk of immune-mediated rejection complicates the allogenic use of established stem cells. We assessed an alternative approach, employing chemical activation of nonfertilized metaphase II oocytes for producing stem cells homozygous for MHC. By using F1 hybrid mice (H-2-B/D), we established stem cell lines homozygous for H-2-B and H-2-D, respectively. The undifferentiated cells retained a normal karyotype, expressed stage-specific embryonic antigen-1 and Oct4, and were positive for alkaline phosphatase and telomerase. Teratomatous growth of these cells displayed the development of a variety of tissue types encompassing all three germ layers. In addition, these cells demonstrated the potential for in vitro differentiation into endoderm, neuronal, and hematopoietic lineages. We also evaluated this homozygous stem cell approach in human tissue. Five unfertilized blastocysts were derived from a total of 25 human oocytes, and cells from one of the five hatched blastocysts proliferated and survived beyond two passages. Our studies demonstrate a plausible homozygous stem cell approach for deriving pluripotent stem cells that can overcome the immune-mediated rejection response common in allotransplantation, while decreasing the ethical concerns surrounding human embryonic stem cell research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available