4.8 Article

Adipose-Specific Knockout of raptor Results in Lean Mice with Enhanced Mitochondrial Respiration

Journal

CELL METABOLISM
Volume 8, Issue 5, Pages 399-410

Publisher

CELL PRESS
DOI: 10.1016/j.cmet.2008.09.003

Keywords

-

Funding

  1. Roche Research Foundation
  2. FEES
  3. Swiss National Science Foundation
  4. Canton of Basel

Ask authors/readers for more resources

raptor is a specific and essential component of mammalian TOR complex 1 (mTORC1), a key regulator of cell growth and metabolism. To investigate a role of adipose mTORC1 in regulation of adipose and whole-body metabolism, we generated mice with an adipose-specific knockout of raptor (raptor(ad-/-)). Compared to control littermates, raptor(ad-1-) mice had substantially less adipose tissue, were protected against diet-induced obesity and hypercholesterolemia, and exhibited improved insulin sensitivity. Leanness was in spite of reduced physical activity and unaffected caloric intake, lipolysis, and absorption of lipids from the food. White adipose tissue of raptor(ad-/-) mice displayed enhanced expression of genes encoding mitochondrial uncoupling proteins characteristic of brown fat. Leanness of the raptorad-1- mice was attributed to elevated energy expenditure due to mitochondrial uncoupling. These results suggest that adipose mTORC1 is a regulator of adipose metabolism and, thereby, controls wholebody energy homeostasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available