4.6 Article

A feasible sequential linear equation method for inequality constrained optimization

Journal

SIAM JOURNAL ON OPTIMIZATION
Volume 13, Issue 4, Pages 1222-1244

Publisher

SIAM PUBLICATIONS
DOI: 10.1137/S1052623401383881

Keywords

sequential linear equation algorithm; optimization; active set strategy; global convergence; superlinear convergence

Ask authors/readers for more resources

In this paper, by means of the concept of the working set, which is an estimate of the active set, we propose a feasible sequential linear equation algorithm for solving inequality constrained optimization problems. At each iteration of the proposed algorithm, we first solve one system of linear equations with a coefficient matrix of size m x m (where m is the number of constraints) to compute the working set; we then solve a subproblem which consists of four reduced systems of linear equations with a common coefficient matrix. Unlike existing QP-free algorithms, the subproblem is concerned with only the constraints corresponding to the working set. The constraints not in the working set are neglected. Consequently, the dimension of each subproblem is not of full dimension. Without assuming the isolatedness of the stationary points, we prove that every accumulation point of the sequence generated by the proposed algorithm is a KKT point of the problem. Moreover, after finitely many iterations, the working set becomes independent of the iterates and is essentially the same as the active set of the KKT point. In other words, after finitely many steps, only those constraints which are active at the solution will be involved in the subproblem. Under some additional conditions, we show that the convergence rate is two-step superlinear or even Q-superlinear. We also report some preliminary numerical experiments to show that the proposed algorithm is practicable and effective for the test problems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available