4.7 Article

First-generation SNP/InDel markers tagging loci for pathogen resistance in the potato genome

Journal

PLANT BIOTECHNOLOGY JOURNAL
Volume 1, Issue 6, Pages 399-410

Publisher

WILEY
DOI: 10.1046/j.1467-7652.2003.00036.x

Keywords

database; pathogen resistance; potato (Solanum tuberosum); resistance-gene-like; single nucleotide polymorphism (SNP)

Ask authors/readers for more resources

A panel of 17 tetraploid and 11 diploid potato genotypes was screened by comparative sequence analysis of polymerase chain reaction (PCR) products for single nucleotide polymorphisms (SNPs) and insertion-deletion polymorphisms (InDels), in regions of the potato genome where genes for qualitative and/or quantitative resistance to different pathogens have been localized. Most SNP and InDel markers were derived from bacterial artificial chromosome (BAC) insertions that contain sequences similar to the family of plant genes for pathogen resistance having nucleotide-binding-site and leucine-rich-repeat domains (NBS-LRR-type genes). Forty-four such NBS-LRR-type genes containing BAC-insertions were mapped to 14 loci, which tag most known resistance quantitative trait loci (QTL) in potato. Resistance QTL not linked to known resistance-gene-like (RGL) sequences were tagged with other markers. In total, 78 genomic DNA fragments with an overall length of 31 kb were comparatively sequenced in the panel of 28 genotypes. 1498 SNPs and 127 InDels were identified, which corresponded, on average, to one SNP every 21 base pairs and one InDel every 243 base pairs. The nucleotide diversity of the tetraploid genotypes (pi = 0.72 x 10(-3)) was lower when compared with diploid genotypes (pi = 2.31 x 10(-3)). RGL sequences showed higher nucleotide diversity when compared with other sequences, suggesting evolution by divergent selection. Information on sequences, sequence similarities, SNPs and InDels is provided in a database that can be queried via the Internet.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available