4.7 Article

Flexible Use of Nuclear Import Pathways by HIV-1

Journal

CELL HOST & MICROBE
Volume 7, Issue 3, Pages 221-233

Publisher

CELL PRESS
DOI: 10.1016/j.chom.2010.02.007

Keywords

-

Funding

  1. National Cancer Institute's intramural Center for Cancer Research
  2. HIV Drug Resistance Program
  3. National Institutes of Health [A152014, A1033303, A1033856, A149131, CA0894, A1063987, A107609441]
  4. American Foundation for AIDS Research postdoctoral fellowship [106404-33-RFMC]
  5. George Kirby Foundation

Ask authors/readers for more resources

HIV-1 replication requires transport of nascent viral DNA and associated virion proteins, the retroviral preintegration complex (PIG), into the nucleus. Too large for passive diffusion through nuclear pore complexes (NPCs), PICs use cellular nuclear transport mechanisms and nucleoporins (NUPs), the NPC components that permit selective nuclear-cytoplasmic exchange, but the details remain unclear. Here we identify a fragment of the cleavage and polyadenylation factor 6, CPSF6, as a potent inhibitor of HIV-1 infection. When enriched in the cytoplasm, CPSF6 prevents HIV-1 nuclear entry by targeting the viral capsid (CA). HIV-1 harboring the N74D mutation in CA fails to interact with CPSF6 and evades the nuclear import restriction. Interestingly, whereas wild-type HIV-1 requires NUP153, N74D HIV-1 mimics feline immunodeficiency virus nuclear import requirements and is more sensitive to NUP155 depletion. These findings reveal a remarkable flexibility in HIV-1 nuclear transport and highlight a single residue in CA as essential in regulating interactions with NUPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available