4.7 Article

The MT2 receptor stimulates axonogenesis and enhances synaptic transmission by activating Akt signaling

Journal

CELL DEATH AND DIFFERENTIATION
Volume 22, Issue 4, Pages 583-596

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/cdd.2014.195

Keywords

-

Funding

  1. National Natural Science Foundation of China [81261120570, 91132725, 81361120245, 81130079, 31201011, 81428009, 91132305]
  2. Ministry of Science and Technology of China [2011DFG33250]
  3. National Natural Science Foundation of Hubei Province [2014CFA017]

Ask authors/readers for more resources

The MT2 receptor is a principal type of G protein-coupled receptor that mainly mediates the effects of melatonin. Deficits of melatonin/MT2 signaling have been found in many neurological disorders, including Alzheimer's disease, the most common cause of dementia in the elderly, suggesting that preservation of the MT2 receptor may be beneficial to these neurological disorders. However, direct evidence linking the MT2 receptor to cognition-related synaptic plasticity remains to be established. Here, we report that the MT2 receptor, but not the MT1 receptor, is essential for axonogenesis both in vitro and in vivo. We find that axon formation is retarded in MT2 receptor knockout mice, MT2-shRNA electroporated brain slices or primary neurons treated with an MT2 receptor selective antagonist. Activation of the MT2 receptor promotes axonogenesis that is associated with an enhancement in excitatory synaptic transmission in central neurons. The signaling components downstream of the MT2 receptor consist of the Akt/GSK-3 beta/CRMP-2 cascade. The MT2 receptor C-terminal motif binds to Akt directly. Either inhibition of the MT2 receptor or disruption of MT2 receptor-Akt binding reduces axonogenesis and synaptic transmission. Our data suggest that the MT2 receptor activates Akt/GSK-3 beta/CRMP-2 signaling and is necessary and sufficient to mediate functional axonogenesis and synaptic formation in central neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available