4.7 Article

Amino-Nogo-A antagonizes reactive oxygen species generation and protects immature primary cortical neurons from oxidative toxicity

Journal

CELL DEATH AND DIFFERENTIATION
Volume 19, Issue 7, Pages 1175-1186

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/cdd.2011.206

Keywords

Nogo-A; ROS; neuroprotection; Prdx2; cortical neurons

Funding

  1. National Natural Science Foundation of China [30770671, 30970936]
  2. Shanghai Leading Academic Discipline Project [B205]

Ask authors/readers for more resources

Nogo-A is originally identified as an inhibitor of axon regeneration from the CNS myelin. Nogo-A is mainly expressed by oligodendrocytes, and also by some neuronal subpopulations, particularly in the developing nervous system. Although extensive studies have uncovered regulatory roles of Nogo-A in neurite outgrowth inhibition, precursor migration, neuronal homeostasis, plasticity and neurodegeneration, its cell-autonomous functions in neurons are largely uncharacterized. Here, we show that HIV-1 trans-activating-mediated amino-Nogo-A protein transduction into cultured primary cortical neurons achieves an almost complete neuroprotection against oxidative stress induced by exogenous hydrogen peroxide (H2O2). Endogenously expressed neuronal Nogo-A is significantly downregulated upon H2O2 treatment. Furthermore, knockdown of Nogo-A results in more susceptibility to acute oxidative insults and markedly increases neuronal death. Interacting with peroxiredoxin 2 (Prdx2), amino-Nogo-A reduces reactive oxygen species (ROS) generation and extracellular signal-regulated kinase phosphorylation to exert neuroprotective effects. Structure-function mapping experiments reveal that, out of NiG-Delta 20, a novel region comprising residues 290-562 of amino-Nogo-A is indispensable for preventing oxidative neuronal death. Moreover, mutagenesis analysis confirms that cysteine residues 424, 464 and 559 are involved in the inhibition of ROS generation and neuroprotective role of amino-Nogo-A. Our data suggest that neuronal Nogo-A might play a cell-autonomous role in improving neuronal survival against oxidative insult through interacting with Prdx2 and scavenging of ROS. Cell Death and Differentiation (2012) 19, 1175-1186; doi: 10.1038/cdd.2011.206; published online 20 January 2012

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available