3.8 Article

In vitro curcumin modulates ferric nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H2O2)-induced peroxidation of microsomal membrane lipids and DNA damage

Journal

TERATOGENESIS CARCINOGENESIS AND MUTAGENESIS
Volume -, Issue -, Pages 151-160

Publisher

WILEY-LISS
DOI: 10.1002/tcm.10070

Keywords

-

Ask authors/readers for more resources

A number of investigations have implicated the involvement of free radicals in various pathogenic process including initiation/promotion stages of carcinogenesis and antioxidants have been considered to be a protective agent for this reason. An iron chelate, ferric nitrilotriacetate (Fe-NTA), is a potent nephrotoxic agent and induces acute and subacute renal proximal tubular necrosis by catalyzing the decomposition of hydrogen peroxide-derived production of hydroxyl radicals, which are known to cause lipid peroxidation and DNA damage. The latter is associated with a high incidence of renal adenocarcinoma in rodents. Lipid peroxidation and DNA damage are the principal manifestation of Fe-NTA-induced toxicity, which could be mitigated by antioxidants. In this study, we therefore investigated the effect of curcumin, a polyphenolic compound from Curcuma longa for a possible protection against lipid peroxidation and DNA damage induced by Fe-NTA and hydrogen peroxide in vitro. Incubation of renal microsomal membrane/and or calf thymus DNA with hydrogen peroxide (40 mM) in the presence of Fe-NTA (0.1 mM) induces renal microsomal lipid peroxidation and DNA damage to about 2.2-and 5.6-fold, respectively, as compared to saline treated control (P<0.001). Induction of renal microsomal lipid peroxidation and DNA damage was modulated by curcumin dose dependently. In lipid peroxidation protection studies, curcumin treatment showed a dose-dependent strong inhibition (18-80% inhibition, P<0.05-0.001) of Fe-NTA and hydrogen peroxide-induced lipid peroxidation as measured by MDA formation in renal microsomes. Similarly, in DNA-sugar damage protection studies, curcumin treatment also showed a dose dependent inhibition (22-57% inhibition, P<0.05-0.001) of DNA-sugar damage. From these studies, it was concluded that curcumin modulates Fe-NTA and hydrogen peroxide-induced peroxidation of microsomal membrane lipids and DNA damage. Curcumin might, therefore, be a suitable candidate for the chemoprevention of Fe-NTA-associated cancer. Teratogenesis Carcinog. Mutagen. Suppl. 1:151-160, 2003. (C) 2003 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available