4.7 Review

Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor

Journal

CELL DEATH AND DIFFERENTIATION
Volume 18, Issue 8, Pages 1271-1278

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/cdd.2011.59

Keywords

-

Funding

  1. Direct For Biological Sciences
  2. Division Of Integrative Organismal Systems [0744709] Funding Source: National Science Foundation

Ask authors/readers for more resources

In spite of fundamental differences between plant and animal cells, it is remarkable that some cell death regulators that were identified to control cell death in metazoans can also function in plants. The fact that most of these proteins do not have structural homologs in plant genomes suggests that they may be targeting a highly conserved 'core' mechanism with conserved functions that is present in all eukaryotes. The ubiquitous Bax inhibitor-1 (BI-1) is a common cell death suppressor in eukaryotes that has provided a potential portal to this cell death core. In this review, we will update the current status of our understanding on the function and activities of this intriguing protein. Genetic, molecular and biochemical studies have so far suggested a consistent view that BI-1 is an endoplasmic reticulum (ER)-resident transmembrane protein that can interact with multiple partners to alter intracellular Ca2+ flux control and lipid dynamics. Functionally, the level of BI-1 protein has been hypothesized to have the role of a rheostat to regulate the threshold of ER-stress inducible cell death. Further, delineation of the cell death suppression mechanism by BI-1 should shed light on an ancient cell death core-control pathway in eukaryotes, as well as novel ways to improve stress tolerance. Cell Death and Differentiation (2011) 18, 1271-1278; doi:10.1038/cdd.2011.59; published online 20 May 2011

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available