4.7 Article

Activation of GPR30 inhibits the growth of prostate cancer cells through sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G2 cell-cycle arrest

Journal

CELL DEATH AND DIFFERENTIATION
Volume 17, Issue 9, Pages 1511-1523

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/cdd.2010.20

Keywords

G-protein-coupled receptor-30; 1-[4-(6-bromobenzo[1,3]dioxol-5yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone; G; non-genomic estrogen signaling; signal transduction; G2/M

Funding

  1. University Grants Committee [CUHK469107]
  2. Chinese University of Hong Kong
  3. US National Institutes of Health [ES006096, ES015584, CA015776, CA112532]

Ask authors/readers for more resources

G-protein-coupled receptor-30 (GPR30) shows estrogen-binding affinity and mediates non-genomic signaling of estrogen to regulate cell growth. We here showed for the first time, in contrast to the reported promoting action of GPR30 on the growth of breast and ovarian cancer cells, that activation of GPR30 by the receptor-specific, non-estrogenic ligand G-1 inhibited the growth of androgen-dependent and androgen-independent prostate cancer (PCa) cells in vitro and PC-3 xenografts in vivo. However, G-1 elicited no growth or histological changes in the prostates of intact mice and did not inhibit growth in quiescent BPH-1, an immortalized benign prostatic epithelial cell line. Treatment of PC-3 cells with G-1 induced cell-cycle arrest at the G(2) phase and reduced the expression of G(2)-checkpoint regulators (cyclin-A2, cyclin-B1, cdc25c, and cdc2) and phosphorylation of their common transcriptional regulator NF-YA in PC-3 cells. With extensive use of siRNA-knockdown experiments and the MEK inhibitor PD98059 in this study, we dissected the mechanism underlying G-1-induced inhibition of PC-3 cell growth, which was mediated through GPR30, followed by sustained activation of Erk1/2 and a c-jun/c-fos-dependent upregulation of p21, resulting in the arrest of PC-3 growth at the G(2) phase. The discovery of this signaling pathway lays the foundation for future development of GPR30-based therapies for PCa. Cell Death and Differentiation (2010) 17, 1511-1523; doi:10.1038/cdd.2010.20; published online 5 March 2010

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available