4.7 Article

Single-point mutations of a lysine residue change function of Bax and Bcl-xL expressed in Bax- and Bak-less mouse embryonic fibroblasts: novel insights into the molecular mechanisms of Bax- induced apoptosis

Journal

CELL DEATH AND DIFFERENTIATION
Volume 18, Issue 3, Pages 427-438

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/cdd.2010.112

Keywords

ion channels; Bax; Bcl2-like proteins; apoptosis

Funding

  1. Italian Association for Cancer Research (AIRC) [5118]
  2. DFG [335/13-3]

Ask authors/readers for more resources

Members of the Bcl-2 family play key roles as proapoptotic (e. g., Bax) and antiapoptotic (e. g., Bcl-x(L)) regulators of programmed cell death. We previously identified the mitochondrial potassium channel Kv1.3 as a novel target of Bax. Incubating Kv1.3-positive isolated mitochondria with Bax triggered apoptotic events, whereas Kv1.3-deficient mitochondria were resistant to this stimulus. Mutation of Bax at lysine 128 (BaxK128E) abrogated its effects on Kv1.3 and the induction of apoptotic changes in mitochondria. These data indicate a toxin-like action of Bax on Kv1.3 to trigger at least some of the mitochondrial changes typical for apoptosis. To gain insight into the mechanism of Bax-Kv1.3 interaction, we mutated Glu158 of Bcl-x(L) (corresponding to K128 in Bax) to lysine. This substitution turned Bcl-x(L) proapoptotic. Transfection of double knockout (Bax(-/-)/Bak(-/-)) mouse embryonic fibroblasts (DKO MEFs) with either wild-type Bax, BaxK128E, or Bcl-x(L)E158K showed that apoptosis induced by various stimuli was defective in DKO MEFs and BaxK128E-transfected cells, but was recovered upon transfection with Bcl-xLE158K or wild-type Bax. Both wild-type Bax and BaxK128E can form similar ion-conducting pores upon incorporation into planar lipid bilayers. Our results point to a physiologically relevant interaction of Bax with Kv1.3 and further indicate a crucial role of a distinct lysine in determining the proapoptotic character of Bcl2-family proteins. Cell Death and Differentiation (2011) 18, 427-438; doi:10.1038/cdd.2010.112; published online 1 October 2010

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available