4.7 Article

Glyoxalase-I is a novel target against Bcr-Abl+ leukemic cells acquiring stem-like characteristics in a hypoxic environment

Journal

CELL DEATH AND DIFFERENTIATION
Volume 17, Issue 7, Pages 1211-1220

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/cdd.2010.6

Keywords

hypoxia; leukemia; stem cell; Glo-I; Abl tyrosine kinase

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan
  2. Kobayashi Institute for Innovative Cancer Chemotherapy

Ask authors/readers for more resources

Abl tyrosine kinase inhibitors (TKIs) such as imatinib and dasatinib are ineffective against Bcr-Abl(+) leukemic stem cells. Thus, the identification of novel agents that are effective in eradicating quiescent Bcr-Abl(+) stem cells is needed to cure leukemias caused by Bcr-Abl(+) cells. Human Bcr-Abl(+) cells engrafted in the bone marrow of immunodeficient mice survive under severe hypoxia. We generated two hypoxia-adapted (HA)-Bcr-Abl(+) sublines by selection in long-term hypoxic cultures (1.0% O-2). Interestingly, HA-Bcr-Abl(+) cells exhibited stem cell-like characteristics, including more cells in a dormant, increase of side population fraction, higher beta-catenin expression, resistance to Abl TKIs, and a higher transplantation efficiency. Compared with the respective parental cells, HA-Bcr-Abl(+) cells had higher levels of protein and higher enzyme activity of glyoxalase-I (Glo-I), an enzyme that detoxifies methylglyoxal, a cytotoxic by-product of glycolysis. In contrast to Abl TKIs, Glo-I inhibitors were much more effective in killing HA-Bcr-Abl(+) cells both in vitro and in vivo. These findings indicate that Glo-I is a novel molecular target for treatment of Bcr-Abl(+) leukemias, and, in particular, Abl TKI-resistant quiescent Bcr-Abl(+) leukemic cells that have acquired stem-like characteristics in the process of adapting to a hypoxic environment. Cell Death and Differentiation (2010) 17, 1211-1220; doi:10.1038/cdd.2010.6; published online 5 February 2010

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available