4.5 Article

LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites

Journal

JOURNAL OF MOLECULAR GRAPHICS & MODELLING
Volume 21, Issue 4, Pages 289-307

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S1093-3263(02)00164-X

Keywords

LigandFit; protein-ligand complexes; high-throughput docking tools; active site detection; ligand docking

Ask authors/readers for more resources

We present a new shape-based method, LigandFit, for accurately docking ligands into protein active sites. The method employs a cavity detection algorithm for detecting invaginations in the protein as candidate active site regions. A shape comparison filter is combined with a Monte Carlo conformational search for generating ligand poses consistent with the active site shape. Candidate poses are minimized in the context of the active site using a grid-based method for evaluating protein-ligand interaction energies. Errors arising from grid interpolation are dramatically reduced using a new non-linear interpolation scheme. Results are presented for 19 diverse protein-ligand complexes. The method appears quite promising, reproducing the X-ray structure ligand pose within an RMS of 2Angstrom in 14 out of the 19 complexes. A high-throughput screening study applied to the thymidine kinase receptor is also presented in which LigandFit, when combined with LigScore, an internally developed scoring function [1], yields very good hit rates for a ligand pool seeded with known actives. (C) 2002 Published by Elsevier Science Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available