4.6 Article

CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth

Journal

CELL CYCLE
Volume 11, Issue 12, Pages 2272-2284

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/cc.20717

Keywords

caveolin-1; CTGF; tumor stroma; cancer-associated fibroblasts; aerobic glycolysis; autophagy; senescence; extracellular matrix; cancer metabolism

Categories

Funding

  1. Breast Cancer Alliance (BCA)
  2. American Cancer Society (ACS)
  3. Margaret Q. Landenberger Research Foundation
  4. NIH/NCI [R01-CA-080250, R01-CA-098779, R01-CA-120876, R01-AR-055660, R01-CA-70896, R01-CA-75503, R01-CA-86072, R01-CA-107382]
  5. Susan G. Komen Breast Cancer Foundation
  6. Dr. Ralph and Marian C. Falk Medical Research Trust
  7. NIH/NCI Cancer Center [P30-CA-56036]
  8. Pennsylvania Department of Health
  9. Breakthrough Breast Cancer in the UK
  10. Advanced ERC Grant from the European Research Council

Ask authors/readers for more resources

Previous studies have demonstrated that loss of caveolin-1 (Cav-1) in stromal cells drives the activation of the TGF beta signaling, with increased transcription of TGF beta target genes, such as connective tissue growth factor (CTGF). In addition, loss of stromal Cav-1 results in the metabolic reprogramming of cancer-associated fibroblasts, with the induction of autophagy and glycolysis. However, it remains unknown if activation of the TGF beta/CTGF pathway regulates the metabolism of cancer-associated fibroblasts. Therefore, we investigated whether CTGF modulates metabolism in the tumor microenvironment. For this purpose, CTGF was overexpressed in normal human fibroblasts or MDA-MB-231 breast cancer cells. Overexpression of CTGF induces HIF-1 alpha-dependent metabolic alterations, with the induction of autophagy/mitophagy, senescence and glycolysis. Here, we show that CTGF exerts compartment-specific effects on tumorigenesis, depending on the cell-type. In a xenograft model, CTGF overexpressing fibroblasts promote the growth of co-injected MDA-MB-231 cells, without any increases in angiogenesis. Conversely, CTGF overexpression in MDA-MB-231 cells dramatically inhibits tumor growth in mice. Intriguingly, increased extracellular matrix deposition was seen in tumors with either fibroblast or MDA-MB-231 overexpression of CTGF. Thus, the effects of CTGF expression on tumor formation are independent of its extracellular matrix function, but rather depend on its ability to activate catabolic metabolism. As such, CTGF-mediated induction of autophagy in fibroblasts supports tumor growth via the generation of recycled nutrients, whereas CTGF-mediated autophagy in breast cancer cells suppresses tumor growth, via tumor cell self-digestion. Our studies shed new light on the compartment-specific role of CTGF in mammary tumorigenesis, and provide novel insights into the mechanism(s) generating a lethal tumor microenvironment in patients lacking stromal Cav-1. As loss of Cav-1 is a stromal marker of poor clinical outcome in women with primary breast cancer, dissecting the downstream signaling effects of Cav-1 are important for understanding disease pathogenesis, and identifying novel therapeutic targets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available