4.6 Article

Mitogen-activated protein kinases and retinal ischemia

Journal

INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE
Volume 44, Issue 12, Pages 5383-5395

Publisher

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/iovs.03-0451

Keywords

-

Categories

Funding

  1. NEI NIH HHS [EY 10343] Funding Source: Medline
  2. NATIONAL EYE INSTITUTE [R01EY010343] Funding Source: NIH RePORTER

Ask authors/readers for more resources

PURPOSE. Mitogen-activated protein kinases (MAPKs), consisting of three major enzymes- extracellular signal-regulated kinase (ERK), p38, and c-jun N-terminal kinase (JNK)-couple cell-surface receptors to critical regulatory targets and gene transcription. We hypothesized that MAPKs are differentially expressed and have distinct functions after retinal ischemia. METHODS. Rats were subjected to retinal ischemia by elevation of intraocular pressure. Changes in MAPK expression were examined by Western blot of whole retinal homogenates and by immunohistochemistry of retinal cryosections. Phosphorylated (activated) ERK, p38, and JNK proteins were localized by fluorescent double labeling. The functional significance of activated MAPKs was assessed using pharmacological antagonists. Specific MAPK blockade was documented by kinase assay and immunohistochemistry for phosphorylated target proteins. The outcome after ischemia was examined with electroretinography (ERG), by measuring retinal cell layer thickness in paraffin-embedded sections, and by TUNEL staining on retinal cryosections. Data were analyzed using ANOVA and post hoc t-test, with P < 0.05 considered significant. RESULTS. Expression of phosphorylated JNK and p38 increased significantly after ischemia and followed a specific time course, beginning at 1 hour, and persisting up to 1 week later. JNK and p38 were expressed in the nuclei of ganglion and amacrine cells, the outer plexiform layer, the nerve fiber layer, and the axonal terminals of bipolar cells. Phosphorylated ERK was expressed in Muller cells, peaking at 1 to 6 hours after ischemia. Blocking activation of p38 or ERK significantly improved recovery of the ERG b-wave after ischemia, dramatically decreased thinning of the inner nuclear layers, and decreased the percentage of TUNEL-positive cells. CONCLUSIONS. The MAPKs each demonstrate a specific cellular distribution after ischemia, and ERK and p38 are linked to apoptosis. Blockade of p38 or ERK provides significant protection from ischemic damage, suggesting a novel therapeutic role for MAPK inhibition in neuroprotection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available