4.6 Article

Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth Understanding the aging and cancer connection

Journal

CELL CYCLE
Volume 10, Issue 23, Pages 4065-4073

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/cc.10.23.18254

Keywords

caveolin-1; mitochondria; oxidative phosphorylation (OXPHOS); electron transport; respiratory chain; reverse Warburg effect; aerobic glycolysis; hydrogen peroxide; lactate; cancer metabolism; TFAM; aging; cancer associated fibroblasts

Categories

Funding

  1. Breast Cancer Alliance (BCA)
  2. American Cancer Society (ACS)
  3. Margaret Q. Landenberger Research Foundation
  4. NIH/NCI [R01-CA-080250, R01-CA-098779, R01-CA-120876, R01-AR-055660, R01-CA-70896, R01-CA-75503, R01-CA-86072, R01-CA-107382]
  5. Susan G. Komen Breast Cancer Foundation
  6. Dr. Ralph and Marian C. Falk Medical Research Trust
  7. NIH/NCI Cancer Center [P30-CA-56036]
  8. Pennsylvania Department of Health
  9. Breakthrough Breast Cancer in the UK
  10. European Research Council

Ask authors/readers for more resources

Increasing chronological age is the most significant risk factor for cancer. Recently, we proposed a new paradigm for understanding the role of the aging and the tumor microenvironment in cancer onset. In this model, cancer cells induce oxidative stress in adjacent stromal fibroblasts. This, in turn, causes several changes in the phenotype of the fibroblast including mitochondrial dysfunction, hydrogen peroxide production and aerobic glycolysis, resulting in high levels of L-lactate production. L-lactate is then transferred from these glycolytic fibroblasts to adjacent epithelial cancer cells and used as fuel for oxidative mitochondrial metabolism. Here, we created a new pre-clinical model system to directly test this hypothesis experimentally. To synthetically generate glycolytic fibroblasts, we genetically-induced mitochondrial dysfunction by knocking down TFAM using an sh-RNA approach. TFAM is mitochondrial transcription factor A, which is important in functionally maintaining the mitochondrial respiratory chain. Interestingly, TFAM-deficient fibroblasts showed evidence of mitochondrial dysfunction and oxidative stress, with the loss of certain mitochondrial respiratory chain components, and the over-production of hydrogen peroxide and L-lactate. Thus, TFAM-deficient fibroblasts underwent metabolic reprogramming towards aerobic glycolysis. Most importantly, TFAM-deficient fibroblasts significantly promoted tumor growth, as assayed using a human breast cancer (MDA-MB-231) xenograft model. These increases in glycolytic fibroblast driven tumor growth were independent of tumor angiogenesis. Mechanistically, TFAM-deficient fibroblasts increased the mitochondrial activity of adjacent epithelial cancer cells in a co-culture system, as seen using MitoTracker. Finally, TFAM-deficient fibroblasts also showed a loss of caveolin-1 (Cav-1), a known breast cancer stromal biomarker. Loss of stromal fibroblast Cav-1 is associated with early tumor recurrence, metastasis and treatment failure, resulting in poor clinical outcome in breast cancer patients. Thus, this new experimental model system, employing glycolytic fibroblasts, may be highly clinically relevant. These studies also have implications for understanding the role of hydrogen peroxide production in oxidative damage and host cell aging, in providing a permissive metabolic microenvironment for promoting and sustaining tumor growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available