4.6 Article

Phosphorylation of EZH2 by CDK1 and CDK2 A possible regulatory mechanism of transmission of the H3K27me3 epigenetic mark through cell divisions

Journal

CELL CYCLE
Volume 10, Issue 4, Pages 579-583

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/cc.10.4.14722

Keywords

EZH2; PRC2; CDK1; CDK2; cell cycle; epigenetics; cancer

Categories

Funding

  1. NIH [CA134514]
  2. Stony Brook University School of Medicine

Ask authors/readers for more resources

Histone H3 lysine 27 trimethylation (H3K27me3) catalyzed by the enzymatic subunit EZH2 in the Polycomb repressive complex 2 (PRC2) is essential for cells to 'memorize' gene expression patterns through cell divisions and plays an important role in establishing and maintaining cell identity during development. However, how the epigenetic mark is inherited through cell generations remains poorly understood. Recently, we and others demonstrate that CDK1 and CDK2 phosphorylate EZH2 at threonine 350 (T350) and that T350 phosphorylation is important for the binding of EZH2 to PRC2 recruiters, such as noncoding RNAs (ncRNAs) HOTAIR and XIST, and for the effective recruitment of PRC2 to EZH2 target loci in cells. These findings imply that phosphorylation of EZH2 by CDK1 and CDK2 may provide cells a mechanism that enhances EZH2 function during S and G(2) phases of the cell cycle, thereby ensuring K27me3 on de novo synthesized H3 incorporated in nascent nucleosomes before sister chromosomes are divided into two daughter cells. Additionally, a potential role of T350 phosphorylation of EZH2 in differing EZH2 from its homolog EZH1 in catalyzing H3K27me3 as well as the interplay between phosphorylation at T350 and other residues (e.g., phosphorylation by p38 at threonine 372 (T372)) in governing EZH2 activity in proliferating versus non-dividing cells are also discussed. Together, CDK phosphorylation of EZH2 at T350 may represent a key regulatory mechanism of EZH2 function that is essential for the maintenance of H3K27me3 marks through cell divisions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available