4.6 Article

miR-33-mediated downregulation of p53 controls hematopoietic stem cell self-renewal

Journal

CELL CYCLE
Volume 9, Issue 16, Pages 3277-3285

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/cc.9.16.12598

Keywords

p53; tumor suppression; ARF; miR-33; hematopoietic stem cells (HSC); self-renewal; neoplastic transformation; apoptosis

Categories

Funding

  1. Human Frontiers Science Program Organization
  2. Spanish Ministry of Health [PI06/0627]
  3. Spanish Ministry of Science and Innovation
  4. ProCNIC Foundation

Ask authors/readers for more resources

Hematopoietic stem cells (HSCs) are defined by their exclusive capacity to both self-renew and to give rise to multipotent progenitors (MPPs) that in turn differentiate into the mature blood cell lineages. The tumor suppressor p53, in addition to its role in the regulation of the cell cycle, plays an important role in HSC self-renewal, although it has not fully resolved. Here we report that in super-p53 mice (sp53), which carry one extra gene dose of p53, the miR-33 is downregulated in HSCs and highly expressed in MPPs. Transplantation assays of miR-33-transduced sp53 HSC results in a significant acquisition of repopulating capacity and a decrease of recipients survival. Moreover, high levels of miR-33 represses the endogenous level of p53 protein in murine embryonic fibroblasts (MEFs), leads both to neoplastic transformation and anchorage independent growth of MEFs, and displays a decrease of apoptotic response using tumor-derived cell lines. Accordingly, we demonstrate that miR-33-mediated downregulation of p53 is dependent on the binding of miR-33 to two conserved motifs in the 3'UTR of p53. Together, these data show that the miR-33 modifies HSC repopulating efficiency of sp53 mice by impairing the p53 function. Defining the role of miR-33 in controlling the HSC self-renewal through p53 may lead to the prevention and treatment of hematopoietic disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available