4.6 Article

Genome wide identification of Plasmodium falciparum helicases A comparison with human host

Journal

CELL CYCLE
Volume 9, Issue 1, Pages 104-120

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/cc.9.1.10241

Keywords

ATPase; DNA; helicase; malaria parasite; RNA; unwinding

Categories

Ask authors/readers for more resources

Helicases are enzymes which catalyze the unwinding of nucleic acid substrate in an energy-dependent manner. these are characterized by the presence of nine well defined conserved motifs and are essential for almost all the processes involving nucleic acids. Plasmodium falciparum causes the most virulent form of malaria. The control of malaria is becoming complicated due to the spread of resistance of both the mosquito vector and the parasite to insecticides and anti-malarial drugs. Helicases could be used as feasible drug target for control of malaria. the P. falciparum genome is completely sequenced but the annotation is still in progress. To identify members of various well defined helicase families, I used the bioinformatics approach and helicase domain sequences to search the P. falciparum genome sequence database. In addition to the homologues for a number of human helicases, some novel parasite specific helicases were also identified. I describe the members of DEAD-box, DEAH box, RuvB, Superkiller family, RecQ and repair helicases from P. falciparum. the detailed studies of these helicases will help in identifying a specific enzyme, which could be used as potential target to control the replication and transmission of the malaria parasite.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available