4.7 Article

Counterion penetration and effective electrostatic interactions in solutions of polyelectrolyte stars and microgels

Journal

PHYSICAL REVIEW E
Volume 67, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.67.011804

Keywords

-

Ask authors/readers for more resources

Counterion distributions and effective electrostatic interactions between spherical macroions in polyelectrolyte solutions are calculated via second-order perturbation (linear response) theory. By modeling the macroions as continuous charge distributions that are permeable to counterions, analytical expressions are obtained for counterion profiles and effective pair interactions in solutions of star-branched and microgel macroions. The counterions are found to penetrate stars more easily than microgels, with important implications for screening of bare macroion interactions. The effective pair interactions are Yukawa in form for separated macroions, but are softly repulsive and bounded for overlapping macroions. A one-body volume energy, which depends on the average macroion concentration, emerges naturally in the theory and contributes to the total free energy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available