4.6 Article

Band-tail photoluminescence in hydrogenated amorphous silicon oxynitride and silicon nitride films

Journal

JOURNAL OF APPLIED PHYSICS
Volume 93, Issue 1, Pages 239-244

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1529292

Keywords

-

Ask authors/readers for more resources

Photoluminescence (PL) measurements were performed on a series of hydrogenated amorphous silicon oxynitride and silicon nitride films with different nitrogen contents deposited by plasma-enhanced chemical-vapor deposition. From the PL and PL excitation spectra, the Urbach energy of the sample is found to be proportional to its PL half-maximum width, regardless of whether the sample is silicon oxynitride or silicon nitride. Time-resolved PL measurements showed that PL peak energy varies with time after the excitation, showing a systematic dependence on the chemical composition in the two materials. That the PLs observed in the two materials have very similar characteristics regardless of the presence of oxygen strongly indicates that the PLs result from the same chemical structure, more specifically Si-N bonds, and that the two materials have similar band-tail states associated with the static disorder. In the two materials, it is found that the electrons and holes photoexcited into such band-tail states recombine first through an excitonlike recombination process and then through a radiative tunneling recombination process. (C) 2003 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available